Food and Behaviour Research

Donate Log In

Bifidobacterium longum 1714™ Strain Modulates Brain Activity of Healthy Volunteers During Social Stress

Wang H, Braun C, Murphy EF, Enck P (2019) Am J Gastroenterol.  2019 Apr. doi: 10.14309/ajg.0000000000000203. [Epub ahead of print] 

Web URL: Read this and related abstracts on PubMed here



Accumulating evidence indicates that the gut microbiota communicates with the central nervous system, possibly through neural, endocrine, and immune pathways, and influences brain function. B. longum 1714™ has previously been shown to attenuate cortisol output and stress responses in healthy subjects exposed to an acute stressor. However, the ability of B. longum 1714™ to modulate brainfunction in humans is unclear.


In a randomized, double-blinded, placebo-controlled trial, the effects of B. longum 1714™ on neural responses to social stress, induced by the "Cyberball game," a standardized social stress paradigm, were studied. Forty healthy volunteers received either B. longum1714™ or placebo for 4 weeks at a dose of 1 × 10 cfu/d. Brain activity was measured using magnetoencephalography and health status using the 36-item short-form health survey.


B. longum 1714™ altered resting-state neural oscillations, with an increase in theta band power in the frontal and cingulate cortex (P < 0.05) and a decrease in beta-3 band in the hippocampus, fusiform, and temporal cortex (P < 0.05), both of which were associated with subjective vitality changes. All groups showed increased social stress after a 4-week intervention without an effect at behavioral level due to small sample numbers. However, only B. longum 1714™ altered neural oscillation after social stress, with increased theta and alpha band power in the frontal and cingulate cortex (P < 0.05) and supramarginal gyrus (P < 0.05).


See the associated news article: